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A b s t r a c t  

It is shown that Maxwell's equations admit solutions for charge moving with the speed 
of light. These are globally regular, but if the charge is one of sign only, the total energy 
is infinite. However, if equal amounts of positive and negative charge are present, the 
total energy can be finite, and such solutions seem physically unobjectionable. 

1. I n t r oduc t i on  

Plane wave solutions of Maxwell's equations are source-free, and 
physically this is taken to mean that the sources occur at infinity. A 
generalisation of plane waves is that class of waves whose fronts are plane 
but whose amplitudes vary over each front: these are sometimes called 
p l a n e - f r o n t e d  waves  (Kundt, 1961). Among the plane-fronted waves there 
is a large sub-class which have sources in the finite part  of space-time, and 
these are investigated here. The sources are shown in Section 2 to be charges 
travelling with the speed of light c. 

One can construct a model for a charged particle moving with speed c 
(Section 3), but this is unphysical because its total energy is infinite. If, 
however, we take a dipole particle the total energy may be finite, as is 
shown in Section 4. 

Whether the fields arise from purely retarded contributions of the source 
is by no means obvious, and this is investigated in the Appendix. 

The only relevant previous work I have been aLIe to find is that of  
Bateman (1915), who studied fields of singularities moving with speed c 
from a rather general point of view, but without considering the nature 
of  the source or the field energy; and some brief remarks of Sommerfeld 
(1905). 

2. The  E l e c t r o m a g n e t i c  F i e ld  

I use throughout the metric of  special relativity 

ds z = - d x  2 - dy  z - d z  2 + d t  z (2.1) 
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choosing unrat ional ised Gauss ian  units but  with the unit of  t ime chosen 
so that  the velocity of  light, e, is 1. The  coordinates  are numbered  

x I =- x ,  x 2 = y ,  x 3 = z ,  x 4 -  t 

The field will be generated by a vector  potent ia l  

A i = (0, 0, 95, 95) or  Ai = (0, 0,-95, 95) (2.2) 

where 95 is a funct ion of  differentiability class C 1 and piecewise C 2 on every 
closed interval  o f  the x ~. This ensures the continuity of  the field F~k and 
precludes surface charges and surface currents. The  function 95 will be given 
the fo rm 

95 95( ) "~ = x , y , u ,  U = t - - z  

and Fik, given by 
Fik  = A~,k --  Ak,~ 

( comma  denotes part ial  differentiation) becomes 

(2.3) 

(2.4) 

i x) 0 95' -qS' (2.5) 
F~k= _95 -95, 0 

x 95, 0 

where a subscript  x or y means  O/Ox or O/Oy. The four  current  

j i  = (4~)-1Fik.k (2.6) 
has componen t s  

d '  = (0, O, p,  p)  (2.7) 
where 

4~rp = - V  2 95 -= -(95xx + 95,y) (2.8) 

so that  in empty  space, where g~ = 0, 95 satisfies 

95xx + 957, = 0 (2.9) 

The  electromagnet ic  field (2.5) is nul l ,  i.e. it satisfies 

Fik  F i k  = 0 and "r]iakmFijFk, n = 0 (2.10) 

I t  is often called a p l a n e - f r o n t e d  wave ,  because the wave-fronts  are simply 
z - t = const. A plane wave is a special case of  a plane-fronted wave in 
which the F,k are constant  over  a wave-front .  The energy tensor, which 
because of  (2.10) reduces to 

E k  ~ = - F  ~a Fk ,  (2.1 1) 

has the following non-zero componen t s  

_ E 3  3 ~ _ E 3 4  = E 4  3 = .E4 4 = 95x 2 + 9572 def W ( 2 . 1 2 )  
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Fix attention on a particular Lorentz frame S, and suppose that at the 
world-point P the source consists of identical charges e. Then 

j4  = e x number of charges per unit volume in S; 
j 3  = e • number of charges crossing unit area in unit time in S, 

and the equality j3 = j 4  in (2.7) implies that the charges are moving with 
unit velocity. Hence the sources consist of  charge of  density p moving with 
the speed of  light. This is not surprising, because J~ is a null vector, i.e. 
J~Ji = 0. However, the assumption that at every point P charge of only 
one sign is present is essential.? Nevertheless, p can assume different signs 
at different world-points. 

Except for solutions depending solely on u, every solution of Laplace's 
equation (2.9) must be singular. I shall now show how a singularity in t~e 
finite region of the x, y plane may be replaced by a region in which a current 
is flowing, and in which Fik are continuous. Suppose 4 is a function [e.g. 
4 = X( X2 ~- y2)--I exp (-�89 whose only singularities lie on the 2-surface in 
Minkowski space-time 

S: x = 0, y = 0 (2.13) 

To obtain a globally regular field we surround S by the 3-surface 

~: xZ + yZ=a2 (2.14) 

a being a positive constant, and replace 4 by some function 4" of class 
C 2 inside and on 27, that is, in 

we also require that 

D: {(x ,y ,z , t ) :x2  § y2 <~ a 2} (2.15) 

4" = 4, 04 
Ox i - Ox ~ on Z (2.16) 

It is fairly obvious that a function 4" satisfying (2.16) always exists and 
this will be assumed hereafter. [A proof can be given as in Bonnor (1969).] 

4* will not satisfy (2.9) throughout D; where it does not, J~ is given by 
(2.7). In this way we can construct a globally regular electromagnetic field 
representing charges moving with speed c within D, and empty space 
outside. 

3. Model of  a Charged Partiele Moving with Speed e 

As an example let us consider the potential, 

4 = ~b(u)(21ogr + 1),  r>~a (3.1) 

t This is a satisfactory description of, for example, a stream of electrons. However 
it does not describe the state of affairs inside a conductor, where in every small region 
there exist positive and negative charges moving with different velocities. In the latter 
situation, the nullity ofJ i would not imply that the charges travel with speed c. 
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r = r r2/a z r < a (3.2) 

where r = +(x 2 + y 2 ) l / z  and r is of class C 2. Then r is of class C 1 near 
r = a and of class C z in any closed interval of r not containing r = a, and 
although r tends to infinity with r, the field Fik tends to zero, so (3.1) and 
(3.2) are physically acceptable solutions. The current four-vector is 

j i  = O, " r > a (3.3) 

J '  = -(Tra2) -1 r 0, 1, 1), r < a (3.4) 

If  r = const., the source is a constant beam of charges moving with 
speed c. The field, given by (2.5), is the electric field of a line charge, together 
with the magnetic field of a steady straight current. 

The charges of the beam do not interact, because the force term F~kJ k 
vanishes. Hence the beam can persist without non-electromagnetic forces. 
This applies too to the other solutions of Sections 3 and 4. 

Now suppose that ~b(u) is an even function with the shape of a single 
pulse [e.g. r = exp (-�89 satisfying 

< O ( u  -(1+'') as (3.5) 
so that 

f r du 
--co 

exists. Then the source is a pulse of charge moving with speed c along the 
z-axis. This could be taken as the model of a charged particle. Let O be 
an observer at P(xo,Yo,Zo); according to (3.1), (3.2) and (2.5), O finds that 
the greatest values of Fik occur at the maximum in 4: that is, at just the 
moment when the thickest part of the pulse is passing P in its journey along 
Oz. As the pulse becomes sharper and sharper, O experiences an electro- 
magnetic field for a shorter and shorter time; but ( i fP  is outside the pulse) 
O finds during this short time the electric field of an infinite line charge, 
and the magnetic field of an infinite straight current. 

This behaviour seemed to me so remarkable that I decided to see whether 
the vector potential (3.1) could be constructed from the current (3.4) by 
means of retarded potentials alone. It seemed quite possible at the outset 
that one might need to add either a contribution from the advanced 
potential, or a non-singular wave function, or both. In fact, as is shown 
in the Appendix, (3.1) can be constructed by retarded potentials alone, 
except for a function of t -  z, which is unimportant because it vanishes 
when one forms the field by means of (2.4). 

One can take, instead of (2.3) 

d e f  
r r  t + z  (3.6) 

In this case one finds that the field arises from a purely advanced potential. 
Since (3.6) arises from (2.3) simply by reversing the direction of the z-axis 



C H A R G E  M O V I N G  W I T H  T H E  S P E E D  O F  L I G H T  377 

this seems rather strange. However, (3.6) also comes from (2.3) by altering 
the sign of t, so from this point of view a change from retarded to advanced 
is natural. However, it does suggest that for fields like these the distinction 
between advanced and retarded potentials is of no great importance. 

The instantaneous value of the relative energy W of the exterior field 
(3.1) is obtained from (2.12): 

eo2rr 

W e x t = 4  f f f r-l[W(t-z)]2drdOdz ( 3 . 7 )  

--co 0 a 

which diverges. We conclude that a pulse, however short, of charge of one 
sign moving with speed e is unphysical according to Maxwell' s theory. 

It will be shown in the next section that this conclusion need not apply 
if charges of both signs are present. 

4. A Dipole Particle Moving with Speed c 

Consider the potential 

= r cos0, r/>. a (4.1) 

where x =  rcos0, y = rsin0 and r is a pulse function as described in 
Section 3. r is of class C 1 at r = a and of class C 2 elsewhere. For  r > a, 
J~ = 0 and 

j ,  3~bcos0{2r_ ) 
- ~va3 ka 1 (0,0,1,1),  r < a  (4.3) 

We can take this as a model of a particle containing charge of both signs. 
The total charge, i.e. 

co2rt a 

-co 0 0 

vanishes, but the particle has a dipole moment. The total electromagnetic 
energy is, from (2.12), 

co 2~r co 

\Or] rdrdOdz 
--~ 0 0 

which is finite. Since all quantities associated with the particle are well 
behaved, it seems that Maxwell's theory allows a dipole particle travelling 
with speed c. 
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5. Conclusion 
The main conclusions are as follows. 
(1) Globally regular solutions of Maxwell's equations exist for charge 

moving with the speed of light. However, if the net charge is not zero, the 
total energy is infinite. If the net charge is zero the total energy can be finite, 
and such solutions seem physically acceptable. 

(2) This moving charge generates plane-fronted waves. 
(3) Roughly speaking, a particle with a net charge moving with speed 

c generates at an exterior point P the field of a static, infinite line-charge, 
and of a steady straight current but only whilst it is passing P at its shortest 
distance. 

Appendix: Construction of Solution (3.1) by Retarded Potentials 
It is clear from (2.3) and (2.9) that ~ satisfies d'Alembert's equation 

Oz(~+ Oa(~ 02(~+ Oz(~ -47r o (A.1) 
OX 2 ~y2  "q- 022 Ot z = 

and it is known (Ferraro, 1962) that every solution of this equation may 
be written 

f r~ '~176 
v S 

where S is a surface enclosing volume V, O/On means differentiation along 
the outward normal to S, R is the distance from the source-point to the 
field-point (x,y, z, t) and [K] denotes the value of K at time t - R. The first 
integral represents the retarded contribution from that part of the source 
which lies inside S, and the second represents fields having no sources 
inside S. The contribution from advanced potentials, if q~ contains any, will 
be included in the surface integral; but the latter may also include other 
contributions, namely from sources outside S, and from source-free fields, 
such as plane waves. 

The problem here is to see, if S is chosen an infinite sphere centre the 
origin, whether ~ given by (3.1) arises only from the volume integral, or 
whether a surface integral is also necessary. To simplify the work I shall 
not use the interior solution (3.2), but instead I shall treat the source as 
a line with 

0 = -~(u)  ~(x) ~(y) (A.3) 

which corresponds with (3.4). Let 

I(x'Y'Z't)= f ~ d v = -  f ~(t- R - O  (A.4) 
V --co 
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where 
R = Jr [x 2 q-y2 + (a - ~)2]1/2 (A.5) 

We wish to find the difference between I, and q~ given by (3.1). Integrating 
(A.4) by parts, we have 

I = -~b(t - R - ~) log (R - z + ~) 
--r162 

- J R - ' ( R - z +  ~ ) l o g ( R -  z + ~)~b ' ( t -  R -  ~)d~ (A.6) 
--cO 

and inserting the limits we have 

I = 2r  - z) tog r _L. Cr - z) - J  (A.7) 

where J is the integral in (A.6) and C is an infinite constant ;?  we have 
assumed that  r satisfies the very mild condit ion 

5('t,_~| ~b(-u) log u = 0 

which would be satisfied as a consequence of  (3.5). 
We next examine J. I f  we differentiate it, integrating by parts  where 

necessary, we find, using (3.5) 

OJ OJ OJ 
Or = O, Oz at 

so it follows that  J is a function o f  t - z only. Compar ing  (A.7) and (3.1) 
we find that  both  I and r have form 

2~b(u) logr  + function of  (t - z) 

When  we fo rm the F~k by (2.4) the functions o f  t - z have no effect so we 
conclude that  the exterior field o f  Section 3 arises f rom the retarded potential 
o f  the charge distribution (3.4). 
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